Modelling Stormwater Runoff Changes Induced by Ground-Mounted Photovoltaic Solar Parks: A Conceptualization in EPA-SWMM

Author:

Gullotta AuroraORCID,Aschale Tagele Mossie,Peres David J.,Sciuto Guido,Cancelliere Antonino

Abstract

AbstractA modelling framework for the simulation of stormwater runoff in ground-mounted photovoltaic solar parks is proposed. Elements in the solar park and their mutual interactions during precipitation events are conceptualized in EPA-SWMM. We demonstrate the potential of the framework by exploring how different factors influence runoff formation. Specifically, we carry out simulations for different sizes of the installation, soil types and input hyetographs. We also show the effect of ground cover, by changing the surface roughness. Outflow discharge from the park is compared to that from a reference catchment to evaluate variations of peak flow and runoff volume. Results highlight no practical changes in runoff in the short term after installation. However, in the long term, modifications in soil cover may lead to some potential increase of runoff. For instance, increments of the peak flow from the solar park up to 21% and 35% are obtained for roughness coefficient reductions of 10% and 20%, respectively. The proposed modelling approach can be beneficial for studying hydrological impacts of solar parks and thus for planning measures for their mitigation.

Funder

Università degli Studi di Catania

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3