Utilization of the Bayesian Method to Improve Hydrological Drought Prediction Accuracy
Author:
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology,Civil and Structural Engineering
Link
http://link.springer.com/article/10.1007/s11269-017-1682-x/fulltext.html
Reference26 articles.
1. Coelho CAS, Pezzulli S, Balmaseda M, Doblas-Reyes FJ, Stephenson DB (2004) Forecast calibration and combination: a simple Bayesian approach for ENSO. J Clim 17:1504–1516
2. Fang L, Qing-Cun Z, Chao-Fan L (2009) A Bayesian scheme for probabilistic multi-model ensemble prediction of summer rainfall over the Yangtze River valley. Atmos Oceanic Sci Lett 2:314–319
3. Gelman A (2003) A Bayesian formulation of exploratory data analysis and goodness-of-fit testing. Int Stat Rev 71:369–382
4. Gobena AK, Gan TY (2010) Incorporation of seasonal climate forecasts in the ensemble streamflow prediction system. J Hydrol 385:336–352
5. Hosking JRM, Wallis JR (1993) Some statistics useful in regional frequency analysis. Water Resour Res 29:271–281
Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Improving the probabilistic drought prediction with soil moisture information under the ensemble streamflow prediction framework;Stochastic Environmental Research and Risk Assessment;2024-04-04
2. A new hybrid model for monthly runoff prediction using ELMAN neural network based on decomposition-integration structure with local error correction method;Expert Systems with Applications;2024-03
3. Machine Learning for Drought Prediction; Review, Bibliometric Analysis, and Models Evaluation;2023 IEEE 27th International Conference on Intelligent Engineering Systems (INES);2023-07-26
4. An enhanced monthly runoff time series prediction using extreme learning machine optimized by salp swarm algorithm based on time varying filtering based empirical mode decomposition;Journal of Hydrology;2023-05
5. Detection of hydropower change points under future climate conditions based on technical hydropower potential changes in Asia;Journal of Hydrology: Regional Studies;2022-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3