Detecting Background Leakages in Water Infrastructure With Fiber Optic Distributed Temperature Sensing: Insights From a Heat Transfer-Unsaturated Flow Model

Author:

D’Aniello AndreaORCID

Abstract

AbstractThe use of fiber optic distributed temperature sensing (DTS) to detect and locate leaks is still in its infancy in water infrastructure, despite its promising capabilities. Only few experiments tested this technology, and none of these studies focused on small but persistent leaks, like background leakages, which are ubiquitous and generally go undetected with the technology currently available, thus posing a serious threat to the available water resource. To test the feasibility of detecting and locating background leakages with fiber optic DTS, this study provides a detailed analysis on flow and temperature alterations around leaking water pipelines in presence of small leaks (5, 25, and 125 L/d) with small to moderate temperature differences with the surrounding soil, under 3 different pipe defect configurations, either in absence or in presence of pipe thermal insulation. Transient 3D heat transfer-unsaturated flow numerical simulations showed that there is potential to use temperature alterations to detect and locate incredibly small leaks with fiber optic DTS, like background leakages, despite the influence of pipe temperature on the surrounding soil. The analysis showed that extent, distribution, and magnitude of these alterations are convection dominated at a given temperature difference between leaked water and undisturbed soil, and that it may not be strictly necessary to place the optical fiber directly below the pipe. Indeed, optical fibers located within the utility trench at the sides of the pipe and below its bottom showed comparable or even better performance, thus giving new opportunities to retrofit existing pipelines as well.

Funder

Università degli Studi di Napoli Federico II

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3