Abstract
AbstractThis research introduces an innovative framework aimed at developing a risk assessment to analyse the breaching hydraulic control of non-impounding reservoirs for irrigation purposes, called irrigation reservoirs (IRs). This approach comprises an analytical method based on several empirical formulas where the one that best fits the different geometric characteristics of IR water systems is chosen. Furthermore, a stochastic framework allows for the incorporation of the occurrence probability as a tool to characterize the risk analysis of IRs. This occurrence probability has two components: probability based on the bottom elevation of a final breach and probability based on the failure mode (piping in this case). In risk assessment terms, the ultimate product comprises the maximum hazard probability maps that allow a significant improvement in the representation of the artificial flooding effect. This research was successfully applied in two dimensions, synthetically and realistically, in the Las Porteras and Macías Picavea IR water systems (Spain). This approach may improve the management of this type of hydraulic infrastructure and its surrounding area by reducing the risk of experiencing negative consequences derived from uncontrolled hydraulic breaching.
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献