Machine learning to identify distal tibial classic metaphyseal lesions of infant abuse: a pilot study
Author:
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Pediatrics, Perinatology and Child Health
Link
https://link.springer.com/content/pdf/10.1007/s00247-022-05287-w.pdf
Reference35 articles.
1. Kleinman PK, Perez-Rossello JM, Newton AW et al (2011) Prevalence of the classic metaphyseal lesion in infants at low versus high risk for abuse. AJR Am J Roentgenol 197:1005–1008
2. Strouse PJ, Boal DKB (2013) Child abuse. In: Coley BD (ed) Caffey’s pediatric diagnostic imaging. Elsevier, Philadelphia, pp 1587–1598
3. Flaherty EG, Perez-Rossello JM, Levine MA et al (2014) Evaluating children with fractures for child physical abuse. Pediatrics 133:e477–e489
4. Servaes S, Brown SD, Choudhary AK et al (2016) The etiology and significance of fractures in infants and young children: a critical multidisciplinary review. Pediatr Radiol 46:591–600
5. Kleinman PK, Marks SC, Blackbourne B (1986) The metaphyseal lesion in abused infants: a radiologic histopathologic study. AJR Am J Roentgenol 146:896–905
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Improving the radiographic image analysis of the classic metaphyseal lesion via conditional diffusion models;Medical Image Analysis;2024-10
2. Artificial intelligence diagnostic accuracy in fracture detection from plain radiographs and comparing it with clinicians: a systematic review and meta-analysis;Clinical Radiology;2024-08
3. Development, contributions, and future directions of a multicenter child abuse research network;Current Problems in Pediatric and Adolescent Health Care;2024-03
4. Artificial Intelligence and Child Abuse and Neglect: A Systematic Review;Children;2023-10-06
5. BS-SC Model: A Novel Method for Predicting Child Abuse Using Borderline-SMOTE Enabled Stacking Classifier;Computer Systems Science and Engineering;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3