Computed tomography imaging phenotypes of hepatoblastoma identified from radiomics signatures are associated with the efficacy of neoadjuvant chemotherapy

Author:

Chen Yingqian,Froelich Matthias F.,Tharmaseelan Hishan,Jiang Hong,Wang Yuanqi,Li Haitao,Tao Mingyao,Gao Ying,Wang Jifei,Liu Juncheng,Schoenberg Stefan O.,Feng Shiting,Weis MeikeORCID

Abstract

Abstract Background Though neoadjuvant chemotherapy has been widely used in the treatment of hepatoblastoma, there still lacks an effective way to predict its effect. Objective To characterize hepatoblastoma based on radiomics image features and identify radiomics-based lesion phenotypes by unsupervised machine learning, intended to build a classifier to predict the response to neoadjuvant chemotherapy. Materials and methods In this retrospective study, we segmented the arterial phase images of 137 cases of pediatric hepatoblastoma and extracted the radiomics features using PyRadiomics. Then unsupervised k-means clustering was applied to cluster the tumors, whose result was verified by t-distributed stochastic neighbor embedding (t-SNE). The least absolute shrinkage and selection operator (LASSO) regression was used for feature selection, and the clusters were visually analyzed by radiologists. The correlations between the clusters, clinical and pathological parameters, and qualitative radiological features were analyzed. Results Hepatoblastoma was clustered into three phenotypes (homogenous type, heterogenous type, and nodulated type) based on radiomics features. The clustering results had a high correlation with response to neoadjuvant chemotherapy (P=0.02). The epithelial ratio and cystic components in radiological features were also associated with the clusters (P=0.029 and 0.008, respectively). Conclusions This radiomics-based cluster system may have the potential to facilitate the precise treatment of hepatoblastoma. In addition, this study further demonstrated the feasibility of using unsupervised machine learning in a disease without a proper imaging classification system. Graphical abstract

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Medizinische Fakultät Heidelberg der Universität Heidelberg

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Pediatrics, Perinatology and Child Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3