Abstract
Abstract
Background
Idiopathic scoliosis is common in adolescence. Due to the rapid growth of the spine, it must be monitored closely with radiographs to ensure timely intervention when therapy is needed. As these radiographs continue into young adulthood, patients are repeatedly exposed to ionizing radiation.
Objective
This study aimed to investigate whether real-time magnetic resonance imaging (MRI) is equivalent to conventional radiography in juvenile idiopathic scoliosis for determining curvature, rotation and the Risser stage. Additionally, the time requirement should be quantified.
Materials and methods
Children with idiopathic scoliosis who had postero-anterior whole-spine radiography for clinical indications were included in this prospective study. A real-time spine MRI was performed at 3 tesla in the supine position, capturing images in both the coronal and sagittal planes. The scoliosis was assessed using Cobb angle, rotation was evaluated based on Nash and Moe criteria, and the Risser stage was determined for each modality. The correlations between modalities and a correction factor for the Cobb angle between the standing and supine position were calculated.
Results
A total of 33 children (aged 5–17 years), who met the inclusion criteria, were recruited. The Cobb angle (R2 = 0.972; P < 0.01) was positively correlated with a correction factor of 1.07 between modalities. Additionally, the degree of rotation (R2 = 0.92; P < 0.01) and the Risser stage (R2 = 0.93; P < 0.01) demonstrated a strong correlation.
Conclusion
Real-time MRI is equivalent to conventional radiography in determining baseline parameters. Furthermore, it is radiation-free and less time-consuming.
Graphical abstract
Publisher
Springer Science and Business Media LLC