Cholesterol Hydroperoxide Co-trafficking in Testosterone-generating Leydig Cells: GPx4 Inhibition of Cytotoxic and Anti-steroidogenic Effects

Author:

Pabisz Pawel,Bazak Jerzy,Sabat Michal,Girotti Albert W.,Korytowski Witold

Abstract

AbstractTrafficking of intracellular cholesterol (Ch) to and into mitochondria of steroidogenic cells is required for steroid hormone biosynthesis. This trafficking is typically mediated by one or more proteins of the steroidogenic acute regulatory (StAR) family. Our previous studies revealed that 7-OOH, a redox-active cholesterol hydroperoxide, could be co-trafficked with Ch to/into mitochondria of MA-10 Leydig cells, thereby inducing membrane lipid peroxidation (LPO) which impaired progesterone biosynthesis. These negative effects of 7-OOH were inhibited by endogenous selenoperoxidase GPx4, indicating that this enzyme could protect against 7-OOH-induced oxidative damage/dysfunction. In the present study, we advanced our Leydig focus to cultured murine TM3 cells and then to primary cells from rat testis, both of which produce testosterone. Using a fluorescent probe, we found that extensive free radical-mediated LPO occurred in mitochondria of stimulated primary Leydig cells during treatment with liposomal Ch+7-OOH, resulting in a significant decline in testosterone output relative to that with Ch alone. Strong enhancement of LPO and testosterone shortfall by RSL3 (a GPx4 inhibitor) and reversal thereof by Ebselen (a GPx4 mimetic), suggested that endogenous GPx4 was playing a key antioxidant role. 7-OOH in increasing doses was also cytotoxic to these cells, RSL3 exacerbating this in Ebselen-reversable fashion. Moreover, GPx4 knockdown increased cell sensitivity to LPO with reduced testosterone output. These findings, particularly with primary Leydigs (which best represent cells in intact testis) suggest that GPx4 plays a key protective role against peroxidative damage/dysfunction induced by 7-OOH co-trafficking with Ch.

Funder

Polish National Science Center

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry,General Medicine,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3