Abstract
Abstract
Purpose
To investigate the effects of recombinant human oviduct–specific glycoprotein (rHuOVGP1) alone and in combination with progesterone (P4) on intracellular Ca2+ concentration [Ca2+]i and to investigate if rHuOVGP1 in combination with P4 can further enhance tyrosine phosphorylation (pY) of sperm proteins during human sperm capacitation.
Methods
Fluorometric flow cytometry was performed to examine the effects of rHuOVGP1 on [Ca2+]i in human sperm during capacitation. Confocal microscopy was used in conjunction with live cell imaging to analyze the influence of rHuOVGP1 and P4 on [Ca2+]i in the sperm tail and to examine the involvement of CatSper channels in their effect on [Ca2+]i. Western blot analysis was performed to assess the protein levels of p105, a major tyrosine-phosphorylated sperm protein.
Results
rHuOVGP1 increases [Ca2+]i in human sperm at the beginning of capacitation and further increases and sustains the level of [Ca2+]i in the sperm tail following the addition of P4. Inhibition of CatSper channels impedes the effects of rHuOVGP1 on [Ca2+]i in the sperm tail. P4 alone can increase pY of a major human sperm protein, p105, yet yields a further increase when used in combination with rHuOVGP1.
Conclusion
The present study revealed that rHuOVGP1 may work with P4 to upregulate [Ca2+]i at the beginning of capacitation in part through CatSper channels which, in turn, leads to the downstream event of pY of sperm proteins and enhancement of sperm capacitation.
Funder
Canadian Institutes of Health Research
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Developmental Biology,Obstetrics and Gynecology,Genetics,Reproductive Medicine,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献