Fabrication on the microscale: a two-photon polymerized device for oocyte microinjection

Author:

Yagoub Suliman H.ORCID,Thompson Jeremy G.ORCID,Orth AntonyORCID,Dholakia KishanORCID,Gibson Brant C.ORCID,Dunning Kylie R.ORCID

Abstract

Abstract Purpose Intracytoplasmic sperm injection (ICSI) addresses male sub-fertility by injecting a spermatozoon into the oocyte. This challenging procedure requires the use of dual micromanipulators, with success influenced by inter-operator expertise. We hypothesized that minimizing oocyte handling during ICSI will simplify the procedure. To address this, we designed and fabricated a micrometer scale device that houses the oocyte and requires only one micromanipulator for microinjection. Methods The device consisted of 2 components, each of sub-cubic millimeter volume: a Pod and a Garage. These were fabricated using 2-photon polymerization. Toxicity was evaluated by culturing single-mouse presumptive zygotes (PZs) to the blastocyst stage within a Pod, with several Pods (and embryos) docked in a Garage. The development was compared to standard culture. The level of DNA damage/repair in resultant blastocysts was quantified (γH2A.X immunohistochemistry). To demonstrate the capability to carry out ICSI within the device, PZs were microinjected with 4-μm fluorescent microspheres and cultured to the blastocyst stage. Finally, the device was assessed for oocyte traceability and high-throughput microinjection capabilities and compared to standard microinjection practice using key parameters (pipette setup, holding then injecting oocytes). Results Compared to standard culture, embryo culture within Pods and a Garage showed no differences in development to the blastocyst stage or levels of DNA damage in resultant blastocysts. Furthermore, microinjection within our device removes the need for a holding pipette, improves traceability, and facilitates high-throughput microinjection. Conclusion This novel device could improve embryo production following ICSI by simplifying the procedure and thus decreasing inter-operator variability.

Funder

Hospital Research Foundation

Engineering and Physical Sciences Research Council

Centre of Excellence for Nanoscale BioPhotonics, Australian Research Council

The University of Adelaide

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Obstetrics and Gynecology,Genetics,Reproductive Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3