Determinants of thermal homeostasis in the preimplantation embryo: a role for the embryo’s central heating system?

Author:

Leese Henry J.,Sturmey Roger G.ORCID

Abstract

AbstractA number of factors may impinge on thermal homeostasis in the early embryo. The most obvious is the ambient temperature in which development occurs. Physiologically, the temperature in the lumen of the female tract is typically lower than the core body temperature, yet rises at ovulation in the human, while in an IVF setting, embryos are usually maintained at core body temperature. However, internal cellular developmental processes may modulate thermal control within the embryo itself, especially those occurring in the mitochondria which generate intracellular heat through proton leak and provide the embryo with its own ‘central heating system’. Moreover, mitochondrial movements may serve to buffer high local intracellular temperatures. It is also notable that the preimplantation stages of development would generate proportionally little heat within their mitochondria until the blastocyst stage as mitochondrial metabolism is comparatively low during the cleavage stages. Despite these data, the specific notion of thermal control of preimplantation development has received remarkably scant consideration. This opinion paper illustrates the lack of reliable quantitative data on these markers and identifies a major research agenda which needs to be addressed with urgency in view of laboratory conditions in which embryos are maintained as well as climate change–derived heat stress which has a negative effect on numerous clinical markers of early human embryo development.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3