A comparison of two deep-learning-based urban perception models: which one is better?

Author:

Wang Ruifan,Ren Shuliang,Zhang Jiaqi,Yao YaoORCID,Wang Yu,Guan Qingfeng

Abstract

AbstractUrban perception is a hot topic in current urban study and plays a positive role in urban planning and design. At present, there are two methods to calculate urban perception. 1) Using a model to learn image features directly automatically; 2) Coupling machine learning and feature extraction based on expert knowledge (e.g. object proportion) method. With two typical streets in Wuhan as the study area, video data were recorded and used as the model input. In this study, two representative methods are selected: 1) End to end convolution neural network (CNN-based model); 2) Based on full convolution neural network and random forest (FCN + RF-based model). By comparing the accuracy of two models, we analyze the adaptability of the model in different urban scenes. We also analyze the relationship between CNN-based model and urban function based on POI data and OSM data, and verify its interpretability. The results show that the CNN-based model is more accurate than FCN + RF-based model. Because the CNN-based model considers the topological characteristics of the ground objects, its perception results have a stronger nonlinear correlation with urban functions. In addition, we also find that the CNN-based model is more suitable for scenes with weak spatial heterogeneity (such as small and medium-sized urban environments), while the FCN + RF-based model is applicable to scenes with strong spatial heterogeneity (such as the downtown areas of China’s megacities). The results of this study can be used as a reference to provide decision support for urban perception model selection in urban planning.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3