Implications of a Twitter data-centred methodology for assessing commuters’ perceptions of the Delhi metro in India

Author:

Agrawal ApoorvORCID,Kuriakose Paulose N.ORCID

Abstract

AbstractOwing to the onset of the new media age, the idea of e-public participation has proven to be a great complement to the limitations of the conventional public participation approach. In this respect, location-based social networks (LBSN) data can prove to be a game shift in this digital era to offer an insight into the commuter perception of service delivery. The paper aims to investigate the potential of using Twitter data to assess commuters’ perceptions of the Delhi metro, India, by presenting a comprehensive methodology for extracting, processing, and interpreting the data. The study extracts Twitter data from the official handle of the Delhi metro, performs semantic and sentiment analysis to comprehend commuters’ concerns and assesses commuters’ sentiments on the predicted concerns. The paper outlines that the current depth of Twitter data is more inclined to instantaneous responses to grievances encountered. Moreover, the analysis presents that for the data extraction period, the topics ‘Ride Safety’ and ‘Crowding’ have the lowest scores, while ‘Personnel Attitude’ and ‘Customer Interface’ have the highest scores. Further, the paper highlights insights gleaned from Twitter data in addition to the aspects included in the conventional satisfaction survey. The paper concludes by outlining the opportunities and limitations of LBSN analytics for effective public transportation decision-making in India.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Utilizing the Twitter social media to identify transportation-related grievances in Indian cities;Social Network Analysis and Mining;2024-06-17

2. MetroScope: An Advanced System for Real-Time Detection and Analysis of Metro-Related Threats and Events via Twitter;Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval;2023-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3