Quantitative Analysis in Continuous-Flow $$^1$$H Benchtop NMR Spectroscopy by Paramagnetic Relaxation Enhancement

Author:

Kircher Raphael,Mross Sarah,Hasse Hans,Münnemann Kerstin

Abstract

AbstractNuclear magnetic resonance (NMR) spectroscopy is an excellent tool for reaction and process monitoring. Process monitoring is often carried out online, where the analytic device is operated in flow mode. Benchtop NMR spectrometers are especially well-suited for these applications because they can be installed close to the studied process. However, quantitative analysis of a fast-flowing liquid with NMR spectroscopy is challenging because short residence times in the magnetic field of the spectrometer result in inefficient polarization buildup and thus poor signal intensity. This is particularly problematic for benchtop NMR spectrometers, where it severely limits the flow velocity in quantitative measurements. One method for increasing polarization in continuous-flow NMR spectroscopy is paramagnetic relaxation enhancement (PRE). Here, the interaction of the studied liquid with a PRE agent significantly accelerates the buildup of nuclear polarization prior to NMR detection, which enables quantitative measurements at high flow velocities. For process monitoring applications, the synthesis of robust and chemically inert immobilized PRE agents is mandatory. This was accomplished in the present work, where a new PRE agent is tested on 12 common solvents including water, acetonitrile, 1,4-dioxane, and binary mixtures with quantitative benchtop $$^1$$ 1 H NMR spectroscopy at 1 Tesla. The results show that the flow regime for quantitative measurements can be greatly extended by the use of the synthesized PRE agent.

Funder

Deutsche Forschungsgemeinschaft

Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3