Comparative NMR Relaxivity Study of Polyoxometalate-Based Clusters [Mn4(H2O)2(P2W1SO56)2]16− and [{Dy(H2O)6}2Mn4(H2O)2(P2W15O56)2]10− from 20 MHz to 1.2 GHz

Author:

Ibrahim Masooma,Rudszuck Thomas,Kerdi Banan,Krämer Steffen,Guthausen Gisela,Powell Annie K.ORCID

Abstract

AbstractNuclear Magnetic Resonance relaxivities are a measure for the sensitivity of a contrast agent (CA), i.e. the potential of a paramagnetic moiety to enhance longitudinal and transverse relaxation of molecules in its near neighbourhood. The underlying mechanism is called Paramagnetic Relaxation Enhancement (PRE). The relaxivity, characterizing PRE, depends not only on the external applied magnetic field but also depends on numerous factors, such as number of coordinated water molecules, water exchange rate, rotational diffusion, first and second coordination hydration sphere, electronic and magnetic properties of paramagnetic centers and the molecular shape/size of the CA. Relaxation rates are usually normalized to the concentration of the contrast agent to provide the relaxivities. To investigate the influence of these factors on PRE of newly synthesized potential CA, two paramagnetic metals containing polyoxometalates (POMs) [Mn4(H2O)2(P2W15O56)2]16− (Mn4-P2W15) and [{Dy(H2O)6}2Mn4(H2O)2(P2W15O56)2]10− (Dy2Mn4-P2W15) were selected as models to be studied at 1H Larmor frequencies from 20 MHz to 1.2 GHz. Structurally, the POM Dy2Mn4-P2W15 is similar to the tetra-nuclear manganese(II)-substituted sandwich-type POM Mn4-P2W15, with the two coordinated DyIII cations acting as linkers connecting Mn4-P2W15 units, thus forming a 1D ladder-like chain structure based on sandwich-type rungs strung together by the dysprosium cations. This study shows that POM (Dy2Mn4-P2W15) is a promising CA at high magnetic fields and proves that the use of heterometallic clusters is an effective strategy to increase PRE due to the synergistic effects from different metal ions.

Funder

Studienstiftung des Deutschen Volkes

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3