LED-Based Photo-CIDNP Hyperpolarization Enables 19F MR Imaging and 19F NMR Spectroscopy of 3-Fluoro-DL-tyrosine at 0.6 T

Author:

Bernarding JohannesORCID,Bruns Christian,Prediger Isabell,Plaumann Markus

Abstract

AbstractAlthough 19F has high potential to serve as a background-free molecular marker in bioimaging, the molar amount of marker substance is often too small to enable 19F MR imaging or 19F NMR spectroscopy with a sufficiently high signal-to-noise ratio (SNR). Hyperpolarization methods such as parahydrogen-based hyperpolarization or dynamic nuclear polarization (DNP) can significantly improve the SNR, but require expensive and complex sample preparation and the removal of toxic catalysts and solvents. Therefore, we used the biologically compatible model of the fluorinated amino acid 3-Fluoro-DL-tyrosine with riboflavin 5ʹ-monophosphate (FMN) as a chromophore dissolved in D2O with 3.4% H2Odest., allowing to transform light energy into hyperpolarization of the 19F nucleus via photo-chemically induced dynamic nuclear polarization (photo-CIDNP). We used a low-cost high-power blue LED to illuminate the sample replacing traditionally used laser excitation, which is both potentially harmful and costly. For the first time, we present results of hyperpolarized 19F MRI and 19F NMR performed with a low-cost 0.6 T benchtop MRI system. The device allowed simultaneous dual-channel 1H/19F NMR. 19F imaging was performed with a (0.94 mm)2 in-plane resolution. This enabled the spatial resolution of different degrees of hyperpolarization within the sample. We estimated the photo-CIDNP-based 19F signal enhancement at 0.6 T to be approximately 465. FMN did not bleach out even after multiple excitations, so that the signal-to-noise ratio could be further improved by averaging hyperpolarized signals. The results show that the easy-to-use experimental setup has a high potential to serve as an efficient preclinical tool for hyperpolarization studies in bioimaging.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3