Prediction framework for parking search cruising time and emissions in dense urban areas

Author:

Xiao Runhua IvanORCID,Jaller MiguelORCID

Abstract

AbstractThe growing need for temporary pickups/drop-offs and commercial deliveries is crowding out the already inadequate on-street parking spaces designated for car trips, deteriorating the phenomenon of parking search. This paper: (1) uses empirical data and conducts descriptive and comparative analysis using a spatial lag model to analyze the factors influencing average cruising time (ACT) related to parking search, and (2) proposes a novel framework to predict grid-based ACT and to estimate average emission metrics (AEM). The study inputs an aggregated GPS dataset in a 6-month period to the framework and uses New York City and Los Angeles as case study cities. The descriptive and comparative analysis results support the spatial spillover effect of parking search and reveal that residential area, retail area, accommodation, and food services (hotels, restaurants, bars, etc.) employees are the most significant influencing factors on ACT and that temporary pickups/drop-offs and commercial delivery are also unneglectable sources of parking search. The prediction results show a concentrated distribution of ACT in New York City due to private vehicles’ spillover of parking searches. Los Angeles exhibits a relatively high degree of overlap between parking hotspots and emission blackspots, particularly in areas with intense truck activity, further substantiating the close relationship between truck activities and elevated emissions. Following the key findings, the paper proposes several policy recommendations. In practice, this prediction framework can ingest short-term data to provide ACT prediction maps to identify parking hotspots and emission blackspots.

Funder

U.S. Department of Transportation

U.S. National Center for Sustainable Transportation

Publisher

Springer Science and Business Media LLC

Subject

Transportation,Development,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3