Forecasting the commuting generation using metropolis-informed GCN and the topological commuter portrait

Author:

Chen Yuting,Zhao Pengjun,Chen Qi

Abstract

AbstractUnderstanding commuter traffic in transportation networks is crucial for sustainable urban planning with commuting generation forecasts operating as a pivotal stage in commuter traffic modeling. Overcoming challenges posed by the intricacy of commuting networks and the uncertainty of commuter behaviors, we propose MetroGCN, a metropolis-informed graph convolutional network designed for commuting forecasts in metropolitan areas. MetroGCN introduces dimensions of metropolitan indicators to comprehensively construct commuting networks with diverse socioeconomic features. This model also innovatively embeds topological commuter portraits in spatial interaction through a multi-graph representation approach capturing the semantic spatial correlations based on individual characteristics. By incorporating graph convolution and temporal convolution with a spatial–temporal attention module, MetroGCN adeptly handles high-dimensional dependencies in large commuting networks. Quantitative experiments on the Shenzhen metropolitan area datasets validate the superior performance of MetroGCN compared to state-of-the-art methods. Notably, the results highlight the significance of commuter age and income in forecasting commuting generations. Statistical significance analysis further underscores the importance of anthropic indicators for commuting production forecasts and environmental indicators for commuting attraction forecasts. This research contributes to technical advancement and valuable insights into the critical factors influencing commuting generation forecasts.

Funder

Shenzhen Science and Technology Innovation Program

Introduction Project of Postdoctoral International Exchange Program

National Natural Science Foundation of China

Shenzhen science and technology program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3