Abstract
AbstractNew mobility services are appearing with the support of technological developments. Part of them is related to activity scheduling of individuals and the optimization of their travel patterns. A novel method called Activity Chain Optimization (ACO) is an application of the Traveling Salesman Problem with Time Windows (TSP-TW) extended with additional assumptions about temporal and spatial flexibility of the activities, where the travelers can optimize the total travel time of their daily activity schedule. This paper aims to apply the ACO method and evaluate its performance using a real-world household survey dataset, where activity chains of up to 15 activities during a day are considered. The optimization is developed using the genetic algorithm (GA) metaheuristic with suitable parameters selected and the branch-and-bound exact algorithm. The findings demonstrate that the branch-and-bound solution exhibits superior performance for smaller activity chain sizes, while the GA outperforms computationally for activity chains with a size from nine. However, the GA found the solutions in only 2% of the time compared to the branch-and-bound method. By applying the ACO method, relevant time savings and emission reduction can be achieved for travelers, when realizing daily activities.
Funder
Ministry of Innovation and Technology of Hungary
Budapest University of Technology and Economics
Publisher
Springer Science and Business Media LLC