Counting people in the crowd using social media images for crowd management in city events

Author:

Gong V. X.ORCID,Daamen W.,Bozzon A.,Hoogendoorn S. P.

Abstract

AbstractCity events are getting popular and are attracting a large number of people. This increase needs for methods and tools to provide stakeholders with crowd size information for crowd management purposes. Previous works proposed a large number of methods to count the crowd using different data in various contexts, but no methods proposed using social media images in city events and no datasets exist to evaluate the effectiveness of these methods. In this study we investigate how social media images can be used to estimate the crowd size in city events. We construct a social media dataset, compare the effectiveness of face recognition, object recognition, and cascaded methods for crowd size estimation, and investigate the impact of image characteristics on the performance of selected methods. Results show that object recognition based methods, reach the highest accuracy in estimating the crowd size using social media images in city events. We also found that face recognition and object recognition methods are more suitable to estimate the crowd size for social media images which are taken in parallel view, with selfies covering people in full face and in which the persons in the background have the same distance to the camera. However, cascaded methods are more suitable for images taken from top view with gatherings distributed in gradient. The created social media dataset is essential for selecting image characteristics and evaluating the accuracy of people counting methods in an urban event context.

Funder

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Transportation,Development,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3