A maximum uncertainty LDA-based approach for limited sample size problems — with application to face recognition

Author:

Thomaz Carlos Eduardo,Kitani Edson Caoru,Gillies Duncan Fyfe

Abstract

Abstract A critical issue of applying Linear Discriminant Analysis (LDA) is both the singularity and instability of the within-class scatter matrix. In practice, particularly in image recognition applications such as face recognition, there are often a large number of pixels or pre-processed features available, but the total number of training patterns is limited and commonly less than the dimension of the feature space. In this study, a new LDA-based method is proposed. It is based on a straightforward stabilisation approach for the within-class scatter matrix. In order to evaluate its effectiveness, experiments on face recognition using the well-known ORL and FERET face databases were carried out and compared with other LDA-based methods. The classification results indicate that our method improves the LDA classification performance when the within-class scatter matrix is not only singular but also poorly estimated, with or without a Principal Component Analysis intermediate step and using less linear discriminant features. Since statistical discrimination methods are suitable not only for classification but also for characterisation of differences between groups of patterns, further experiments were carried out in order to extend the new LDA-based method to visually analyse the most discriminating hyper-plane separating two populations. The additional results based on frontal face images indicate that the new LDA-based mapping provides an intuitive interpretation of the two-group classification tasks performed, highlighting the group differences captured by the multivariate statistical approach proposed.

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multi-Linear Statistical Method for Discriminant Analysis of 2D Frontal Face Images;Cross-Disciplinary Applications of Artificial Intelligence and Pattern Recognition;2012

2. A new ranking method for principal components analysis and its application to face image analysis;Image and Vision Computing;2010-06

3. Statistical learning approaches for discriminant features selection;Journal of the Brazilian Computer Society;2008-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3