Bioinspired Materials: From Distinct Dimensional Architecture to Thermal Regulation Properties

Author:

Ling Xin,Osotsi Maurice I.,Zhang WangORCID,Wu Yu,Jin Qingjun,Zhang Di

Abstract

AbstractThe structural evolutions of the organisms during the development of billions of years endow them with remarkable thermal-regulation properties, which have significance to their survival against the outer versatile environment. Inspired by the nature, there have been extensive researches to develop thermoregulating materials by mimicking and utilizing the advantages from the natural organisms. In this review, the latest advances in thermal regulation of bioinspired microstructures are summarized, classifying the researches from dimension. The representative materials are described with emphasis on the relationship between the structural features and the corresponding thermal-regulation functions. For one-dimensional materials, wild silkworm cocoon fibers have been involved, and the reasons for unique optical phenomena have been discussed. Pyramid cone structure, grating and multilayer film structure are chosen as typical examples of two-dimensional bionics. The excellent thermal performance of the three-dimensional network frame structures is the focus. Finally, a summary and outlook are given.

Funder

Top Young Talents of Ten Thousand Talents Plan

the National Natural Science Foundation of China

Shanghai Science and Technology Committee

Publisher

Springer Science and Business Media LLC

Subject

Bioengineering,Biophysics,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3