Dynamic Color Regulation of the Lycaenid Butterfly Wing Scales

Author:

Sun MingxiaORCID,Meng Weihao,Yin Haiwei,Fan Lingjie,Shi Lei,Watson Gregory S.,Watson Jolanta A.,Wang Jingxia,Jiang Lei,Liang Aiping

Abstract

AbstractButterfly coloration originates from the finely structured scales grown on the underlying wing cuticle. Most researchers who study butterfly scales are focused on the static optic properties of cover scales, with few works referring to dynamic optical properties of the scales. Here, the dynamic coloration effect of the multiple scales was studied based on the measurements of varying-angle reflection and the characterization of scale flexibility in two species of Lycaenid, Plebejus argyrognomon with violet wings and Polyommatus erotides with blue wings. We explored the angle-dependent color changeability and the color-mediating efficiency of wing scales. It was found that the three main kinds of flexible scales (cover, ground and androconia scales) were asynchronously bent during wing rotation, which caused the discoloration effect. The three layers of composite scales broaden the light signal when compared to the single scale, which may be of great significance to the recognition of insects. Specifically, the androconia scales were shown to strongly contribute to the overall wing coloration. The cover scale coloration was ascribed to the coherence scattering resulted from the short-range order at intermediate spatial frequencies from the 2D Fourier power spectra. Our findings are expected to deepen the understanding of the complex characteristics of biological coloration and to provide new inspirations for the fabrication of biomimetic flexible discoloration materials.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3