Skip to main content
Log in

Multilevel Micro Structures of the Clam Make the Sealing Even Tighter

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Excellent fluid sealing performance is crucial to ensuring the safety of important equipment, especially in aerospace field, such as space capsule and fuel chamber. The frequently opening and closing of the sealing devices is particularly important. Driven by this background, clams (Mactra chinensis) which can open and close their double shells with superior sealing performance, are studied in this work. Here, we show that the clam’s sealing ability is the result of its unique multilevel intermeshing microstructures, including hinge teeth and micro-blocks. These microstructures, which resemble gear teeth, engage with each other when the shell closes, forming a tight structure that prevents the infiltration of water from the outside. Furthermore, the presence of micron blocks prevents the penetration of finer liquids. The simulation results of the bionic end seal components show that the multilevel microstructure has a superior sealing effect. This research is expected to be applied to undersea vehicles that require frequent door opening and closing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Shen, Q. C., Jiang, M. D., Wang, R. T., Song, K. X., Vong, M. H., Jung, W. J., Krisnadi, F., Kan, R. Y., Zheng, F. Y., Fu, B. W., Tao, P., Song, C. Y., Weng, G. M., Peng, B., Wang, J., Shang, W., Dickey, M. D., & Deng, T. (2023). Liquid metal-based soft, hermetic, and wireless-communicable seals for stretchable systems. Science, 379, 488–493.

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Heenan, T. M. M., Mombrini, I., Llewellyn, A., Checchia, S., Tan, C., Johnson, M. J., Jnawali, A., Garbarino, G., Jervis, R., Brett, D. J. L., Di Michiel, M., & Shearing, P. R. (2023). Mapping internal temperatures during high-rate battery applications. Nature, 617, 507–512.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Ridha, I., Basiri, A., Godeshala, S., Rafique, M. Z. E., Ghosh, D., Williams, J., Chawla, N., Lee, J. K., Kilbourne, J., Yao, Y., & Rege, K. (2021). Chromophore-free sealing and repair of soft tissues using mid-infrared light-activated biosealants. Advanced Functional Materials, 31, 2007811.

    Article  CAS  Google Scholar 

  4. Meng, X. C., Xiao, X., Jeon, S., Kim, D., Park, B. J., Kim, Y. J., Rubab, N., Kim, S., & Kim, S. W. (2023). An ultrasound-driven bioadhesive triboelectric nanogenerator for instant wound sealing and electrically accelerated healing in emergencies. Advanced Materials, 35, 2209054.

    Article  CAS  Google Scholar 

  5. Sun, R. J., Song, X., Zhou, K., Zuo, Y. Y., Wang, R. C., Rifaie-Graham, O., Peeler, D. J., Xie, R. X., Leng, Y. X., Geng, H. Y., Brachi, G., Ma, Y., Liu, Y. T., Barron, L., & Stevens, M. M. (2023). Assembly of fillable microrobotic systems by microfluidic loading with dip sealing. Advanced Materials, 35, 2207791.

    Article  CAS  Google Scholar 

  6. Yuk, H., Wu, J. J., Sarrafian, T. L., Mao, X. Y., Varela, C. E., Roche, E. T., Griffiths, L. G., Nabzdyk, C. S., & Zhao, X. H. (2021). Rapid and coagulation-independent haemostatic sealing by a paste inspired by barnacle glue. Nature Biomedical Engineering, 5, 1131–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, Y. R., Cao, X., & Wang, Z. L. (2023). The sealed bionic fishtail-structured TENG based on anticorrosive paint for ocean sensor systems. Nano Energy, 108, 108210.

    Article  CAS  Google Scholar 

  8. Zhao, J. G., Wang, J., Wang, G. R., Liu, Q. Y., & Zhang, Y. (2023). Structure design and sealing performance analysis of the sealing mechanism of the drilling tractor. Lubrication Science, 2023, 1–25.

    ADS  Google Scholar 

  9. Wang, Y., He, Y. M., Xie, X. F., Huang, Z. X., Xu, H., Hu, Q., & Ma, C. B. (2023). Design and simulation of a new near zero-wear non-contact self-impact seal based on the tesla valve structure. Lubricants, 11, 102.

    Article  Google Scholar 

  10. Wang, R. L., Liu, J. H., Zhang, F. K., & Ding, X. Y. (2021). An approach to evaluate the sealing performance of sealing structures based on multiscale contact analyses. Journal of Computational Design and Engineering, 8, 1433–1445.

    Article  Google Scholar 

  11. Liu, D., Yun, F. H., Jiao, K. F., Wang, L. Q., Yan, Z. P., Jia, P., Wang, X. Y., Liu, W. F., Hao, X. Q., & Xu, X. J. (2022). Structural analysis and experimental study on the spherical seal of a subsea connector based on a non-standard o-ring seal. Journal of Marine Science and Engineering, 10, 404.

    Article  CAS  Google Scholar 

  12. Gao, T. Y., Su, B., Jiang, L., & Cong, Q. (2020). Influence of bionic pit structure on friction and sealing performance of reciprocating plunger. Advances in Materials Science and Engineering, 2020, 2130341.

    Article  Google Scholar 

  13. Zhou, W. J., Zhao, Z. B., Wang, Y. F., Shi, J. L., Gan, B., Li, B., & Qiu, N. (2021). Research on leakage performance and dynamic characteristics of a novel labyrinth seal with staggered helical teeth structure. Alexandria Engineering Journal, 60, 3177–3187.

    Article  Google Scholar 

  14. Liu, Y., Qian, L. Q., Xia, C. Y., & Yi, X. Z. (2022). Design and experimental study on a novel sealing structure of rotary control head for coalbed methane underbalanced drilling. Engineering Failure Analysis, 139, 106441.

    Article  CAS  Google Scholar 

  15. Bu, Y. H., Xu, M. R., Liu, H. J., Guo, S. L., Ma, X. L., & Zheng, R. C. (2022). Mechanism of cement stone porosity and permeability structures for downhole fluid packing. Arabian Journal for Science and Engineering, 47, 12223–12235.

    Article  CAS  Google Scholar 

  16. Lucas, V., Bonneau, O., & Frene, J. (1996). Roughness influence on turbulent flow through annular seals including inertia effects. Journal of Tribology-Transactions of the Asme, 118, 175–182.

    Article  Google Scholar 

  17. Narimatsu, I., Atsuta, I., Ayukawa, Y., Oshiro, W., Yasunami, N., Furuhashi, A., & Koyano, K. (2019). Epithelial and connective tissue sealing around titanium implants with various typical surface finishes. Acs Biomaterials Science & Engineering, 5, 4976–4984.

    Article  CAS  Google Scholar 

  18. Cui, Y., Yu, Y. J., Zhong, J. J., & Wang, Y. L. (2022). Prediction of sealing interface leakage based on porous medium model considering effective porosity. Tribology International, 174, 107695.

    Article  Google Scholar 

  19. Persson, B. N. J., Albohr, O., Creton, C., & Peveri, V. (2004). Contact area between a viscoelastic solid and a hard, randomly rough, substrate. Journal of Chemical Physics, 120, 8779–8793.

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Persson, B. N. J., Albohr, O., Tartaglino, U., Volokitin, A. I., & Tosatti, E. (2005). On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. Journal of Physics-Condensed Matter, 17, 1–62.

    Article  ADS  Google Scholar 

  21. Persson, B. N. J., & Yang, C. (2008). Theory of the leak-rate of seals. Journal of Physics-Condensed Matter, 20, 315011.

    Article  ADS  Google Scholar 

  22. Han, Z. W., Liu, L. P., Wang, K. J., Song, H. L., Chen, D. B., Wang, Z., Niu, S. C., Zhang, J. Q., & Ren, L. Q. (2018). Artificial hair-like sensors inspired from nature: A review. Journal of Bionic Engineering, 15, 409–434.

    Article  Google Scholar 

  23. Chen, D. B., Song, H. L., Liu, Q. P., Gan, J., Liu, Y., Chen, K. Y., Wang, C., Wen, S. F., Zhou, Y., Yan, C. Z., Zhang, J. Q., Shi, Y. S., & Han, Z. W. (2020). Large curvature folding strategies of butterfly proboscis. Journal of Bionic Engineering, 17, 1239–1250.

    Article  Google Scholar 

  24. Yu, H. Y., Han, Z. W., Zhang, J. Q., & Zhang, S. J. (2021). Bionic design of tools in cutting: Reducing adhesion, abrasion or friction. Wear, 482, 203955.

    Article  Google Scholar 

  25. Meng, X. S., Zhou, L. C., Liu, L., Zhu, Y. B., Meng, Y. F., Zheng, D. C., Yang, B., Rao, Q. Z., Mao, L. B., Wu, H. A., & Yu, S. H. (2023). Deformable hard tissue with high fatigue resistance in the hinge of bivalve Cristaria plicata. Science, 380, 1252–1257.

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Lin, Z., Xiao, K., Li, L., Zhang, Y., Zhang, X., Chen, D., & Xue, L. (2023). The influence of temperature on anisotropic wettability revealed by friction force measurement. Biomimetics, 8, 180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, L. J., Laan, P. C. M., Yan, X. Y., Cao, X. J., Mekkering, M. J., Zhao, K., Ke, L., Jiang, X. Y., Wu, X. Y., Li, L. J., Xue, L. J., Wang, Z. P., Rothenberg, G., & Yan, N. (2023). High-rate alkaline water electrolysis at industrially relevant conditions enabled by superaerophobic electrode assembly. Advanced Science, 10, 2206180.

    Article  CAS  PubMed  Google Scholar 

  28. Li, G. W., Yang, S. D., Wu, W. Z., Chen, F., Li, X. J., Tian, Q., Wang, K. Y., Zhao, Y. H., Wang, J. Q., Liu, Q. P., Ren, L., Han, Z. W., & Ren, L. Q. (2023). Biomimetic 4d printing catapult: from biological prototype to practical implementation. Advanced Functional Materials, 32, 2301286.

    Article  Google Scholar 

  29. Chen, D. B., Liu, Q. P., Han, Z. W., Zhang, J. Q., Song, H. L., Wang, K. J., Song, Z. Y., Wen, S. F., Zhou, Y., Yan, C. Z., & Shi, Y. S. (2020). 4D printing strain self-sensing and temperature self-sensing integrated sensor-actuator with bioinspired gradient gaps. Advanced Science, 7, 2000584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Niu, H. S., Li, H., Gao, S., Li, Y., Wei, X., Chen, Y. K., Yue, W. J., Zhou, W. J., & Shen, G. Z. (2022). Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Advanced Materials, 34, 2202622.

    Article  CAS  Google Scholar 

  31. Ren, L. Q., Tong, J., Li, J. Q., & Chen, B. C. (2001). Soil adhesion and biomimetics of soil-engaging components: A review. Journal of Agricultural Engineering Research, 79, 239–263.

    Article  Google Scholar 

  32. Tian, L. M., Wang, Y. C., Gao, Z. H., Bu, Z. G., Ren, L. Q., & Gao, J. H. (2013). Coupling function and mechanism of the bionic coupling functional surface (bcfs) caused by the dual factors of form and flexible material. In 4th International Conference of Bionic Engineering (ICBE 2013), Nanjing, China, 18–25.

  33. Wang, S. P., Zhou, S. H., Zhang, X. L., Xu, P. Y., Zhang, Z. H., & Ren, L. Q. (2023). Bionic stepping motors driven by piezoelectric materials. Journal of Bionic Engineering, 20, 858–872.

    Article  Google Scholar 

  34. Jiang, J., Peng, X., Li, J., & Chen, Y. (2016). A comparative study on the performance of typical types of bionic groove dry gas seal based on bird wing. Journal of Bionic Engineering, 13, 324–334.

    Article  Google Scholar 

  35. Zhou, Y., & Liu, Y. (2018). Newly structured design and finite element analysis of bionic nonsmooth surface sealing ring of cone bit. Advances in Mechanical Engineering, 10, 1687814018767704.

    Article  Google Scholar 

  36. Chen, L., Zhang, Y., Cui, Y., Wang, J., & Wang, M. (2022). Effects of snake-bioinspired surface texture on the finger-sealing performance under varied working conditions. Machines, 10, 569.

    Article  Google Scholar 

  37. Shen, X., Zheng, Q. B., & Kim, J. K. (2020). Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Progress in Materials Science, 115, 100708.

    Article  Google Scholar 

  38. Zhao, H., Yang, Z., & Guo, L. (2018). Nacre-inspired composites with different macroscopic dimensions: Strategies for improved mechanical performance and applications. NPG Asia Materials, 10, 1–22.

    Article  ADS  Google Scholar 

  39. Gao, H., Chen, S. M., Mao, L. B., Song, Z. Q., Yao, H. B., Colfen, H., Luo, X. S., Zhang, F., Pan, Z., Meng, Y. F., Ni, Y., & Yu, S. H. (2017). Mass production of bulk artificial nacre with excellent mechanical properties. Nature Communications, 8, 287.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. Hao, S. W., Fu, Q. J., Meng, L., Xu, F., & Yang, J. (2022). A biomimetic laminated strategy enabled strain-interference free and durable flexible thermistor electronics. Nature Communications, 13, 6472.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, J. H., Liu, X. F., Huang, W. F., & Wang, Y. M. (2011). A finite element cavitation algorithm using free mesh for mechanical face seal. In 2nd International Conference on Manufacturing Science and Engineering, Guilin, China, 55–66.

  42. Patir, N., & Cheng, H. S. (1978). An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. Journal of Lubrication Technology, 100, 12–17.

    Article  Google Scholar 

  43. Greenwood, J. A., Williamson, J. B. P., & Bowden, F. P. (1966). Contact of nominally flat surfaces. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 295, 300–319.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52105296, 51973165 and 62161160311), the Fundamental Research Funds for the Central Universities (2042022kf1220), Open Fund of Hubei Key Laboratory of Electronic Manufacturing and Packaging Integration (Wuhan University) (EMPI2023020) and Large-scale Instrument And Equipment Sharing Foundation of Wuhan University.

Funding

This article is funded by National Natural Science Foundation of China, 52105296, Daobing Chen, 51973165, Longjian Xue, 62161160311, Longjian Xue, Fundamental Research Funds for the Central Universities, 2042022kf1220, Yifeng Lei, Large-Scale Instrument and Equipment Sharing Foundation of Wuhan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Longjian Xue or Sheng Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4372 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Zhang, X., Zhang, J. et al. Multilevel Micro Structures of the Clam Make the Sealing Even Tighter. J Bionic Eng (2024). https://doi.org/10.1007/s42235-024-00488-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42235-024-00488-5

Keywords

Navigation