3D Printing of Well Dispersed Electrospun PLGA Fiber Toughened Calcium Phosphate Scaffolds for Osteoanagenesis

Author:

Zhao Guoru,Cui Rongwei,Chen You,Zhou Sijie,Wang Chen,Hu Zhangmei,Zheng Xiaoke,Li Maohong,Qu Shuxin

Abstract

AbstractAlthough the toughening of Calcium phosphate (CaP) scaffold by the addition of fiber has been well recognized, integrated mechanical, structural and functional considerations have been neglected in the design and fabrication of CaP scaffold implant. The emerging 3D printing provides a promising technique to construct CaP scaffold with precise size and elaborate microstructure. However, the most challenge is to extrude smoothly the CaP paste containing fibers for frequently-used extrusion-based 3D printing. In this study, frozen section and chemical dispersant (Pluronic F127, F127) were employed jointly to prepare non-aggregated polylactic-co-glycolic acid (PLGA) fibers. The injectability of CaP pastes with well dispersed PLGA fibers was more than 90% when the content of PLGA fibers was no more than 3 wt%. Meanwhile rheological property of CaP pastes with well dispersed fibers showed shear thinning, which were both beneficial to extrude CaP paste with well dispersed fibers for 3D printing. Moreover, these CaP scaffolds showed ductile fracture behavior due to the pullout and bridging effect of PLGA fibers. The cell proliferation and alkaline phosphatase (ALP) activity indicated that 3D printed CaP scaffold containing PLGA fibers possesses excellent biocompatibility and facilitate osteogenic differentiation ability. Thus, it was feasible to print CaP pastes with well dispersed PLGA fibers to construct toughening CaP scaffolds with the higher shape fidelity and complex structures, which had significant clinical potentials in osteoanagenesis due to their higher toughness and excellent biocompatibility.

Publisher

Springer Science and Business Media LLC

Subject

Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3