Author:
Xia Jianfu,Zhang Hongliang,Li Rizeng,Chen Huiling,Turabieh Hamza,Mafarja Majdi,Pan Zhifang
Abstract
AbstractIn the original Moth-Flame Optimization (MFO), the search behavior of the moth depends on the corresponding flame and the interaction between the moth and its corresponding flame, so it will get stuck in the local optimum easily when facing the multi-dimensional and high-dimensional optimization problems. Therefore, in this work, a generalized oppositional MFO with crossover strategy, named GCMFO, is presented to overcome the mentioned defects. In the proposed GCMFO, GOBL is employed to increase the population diversity and expand the search range in the initialization and iteration jump phase based on the jump rate; crisscross search (CC) is adopted to promote the exploitation and/or exploration ability of MFO. The proposed algorithm’s performance is estimated by organizing a series of experiments; firstly, the CEC2017 benchmark set is adopted to evaluate the performance of GCMFO in tackling high-dimensional and multimodal problems. Secondly, GCMFO is applied to handle multilevel thresholding image segmentation problems. At last, GCMFO is integrated into kernel extreme learning machine classifier to deal with three medical diagnosis cases, including the appendicitis diagnosis, overweight statuses diagnosis, and thyroid cancer diagnosis. Experimental results and discussions show that the proposed approach outperforms the original MFO and other state-of-the-art algorithms on both convergence speed and accuracy. It also indicates that the presented GCMFO has a promising potential for application.
Publisher
Springer Science and Business Media LLC
Subject
Bioengineering,Biophysics,Biotechnology
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献