Generalized Oppositional Moth Flame Optimization with Crossover Strategy: An Approach for Medical Diagnosis

Author:

Xia Jianfu,Zhang Hongliang,Li Rizeng,Chen Huiling,Turabieh Hamza,Mafarja Majdi,Pan Zhifang

Abstract

AbstractIn the original Moth-Flame Optimization (MFO), the search behavior of the moth depends on the corresponding flame and the interaction between the moth and its corresponding flame, so it will get stuck in the local optimum easily when facing the multi-dimensional and high-dimensional optimization problems. Therefore, in this work, a generalized oppositional MFO with crossover strategy, named GCMFO, is presented to overcome the mentioned defects. In the proposed GCMFO, GOBL is employed to increase the population diversity and expand the search range in the initialization and iteration jump phase based on the jump rate; crisscross search (CC) is adopted to promote the exploitation and/or exploration ability of MFO. The proposed algorithm’s performance is estimated by organizing a series of experiments; firstly, the CEC2017 benchmark set is adopted to evaluate the performance of GCMFO in tackling high-dimensional and multimodal problems. Secondly, GCMFO is applied to handle multilevel thresholding image segmentation problems. At last, GCMFO is integrated into kernel extreme learning machine classifier to deal with three medical diagnosis cases, including the appendicitis diagnosis, overweight statuses diagnosis, and thyroid cancer diagnosis. Experimental results and discussions show that the proposed approach outperforms the original MFO and other state-of-the-art algorithms on both convergence speed and accuracy. It also indicates that the presented GCMFO has a promising potential for application.

Publisher

Springer Science and Business Media LLC

Subject

Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3