Multi-strategy Hybrid Coati Optimizer: A Case Study of Prediction of Average Daily Electricity Consumption in China
Author:
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s42235-024-00549-9.pdf
Reference70 articles.
1. Zhao, Z., Zhang, Y., Yang, Y., & Yuan, S. (2022). Load forecasting via grey model-least squares support vector machine model and spatial-temporal distribution of electric consumption intensity. Energy, 255, 124468.
2. Du, X., Wu, D., & Yan, Y. (2023). Prediction of electricity consumption based on GM (1, Nr) model in Jiangsu province, China. Energy, 262, 125439.
3. Widmer, F., Nowak, S., Bowler, B., Huber, P., & Papaemmanouil, A. (2023). Data-driven comparison of federated learning and model personalization for electric load forecasting. Energy and AI, 14, 100253.
4. Kim, G., Lee, G., An, S., & Lee, J. (2023). Forecasting future electric power consumption in Busan New Port using a deep learning model. The Asian Journal of Shipping and Logistics, 39(2), 78–93.
5. Liu, C., Sun, B., Zhang, C., & Li, F. (2020). A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine. Applied Energy, 275, 115383.
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3