Autoencoders reloaded

Author:

Bourlard Hervé,Kabil Selen HandeORCID

Abstract

AbstractIn Bourlard and Kamp (Biol Cybern 59(4):291–294, 1998), it was theoretically proven that autoencoders (AE) with single hidden layer (previously called “auto-associative multilayer perceptrons”) were, in the best case, implementing singular value decomposition (SVD) Golub and Reinsch (Linear algebra, Singular value decomposition and least squares solutions, pp 134–151. Springer, 1971), equivalent to principal component analysis (PCA) Hotelling (Educ Psychol 24(6/7):417–441, 1993); Jolliffe (Principal component analysis, springer series in statistics, 2nd edn. Springer, New York ). That is, AE are able to derive the eigenvalues that represent the amount of variance covered by each component even with the presence of the nonlinear function (sigmoid-like, or any other nonlinear functions) present on their hidden units. Today, with the renewed interest in “deep neural networks” (DNN), multiple types of (deep) AE are being investigated as an alternative to manifold learning Cayton (Univ California San Diego Tech Rep 12(1–17):1, 2005) for conducting nonlinear feature extraction or fusion, each with its own specific (expected) properties. Many of those AE are currently being developed as powerful, nonlinear encoder–decoder models, or used to generate reduced and discriminant feature sets that are more amenable to different modeling and classification tasks. In this paper, we start by recalling and further clarifying the main conclusions of Bourlard and Kamp (Biol Cybern 59(4):291–294, 1998), supporting them by extensive empirical evidences, which were not possible to be provided previously (in 1988), due to the dataset and processing limitations. Upon full understanding of the underlying mechanisms, we show that it remains hard (although feasible) to go beyond the state-of-the-art PCA/SVD techniques for auto-association. Finally, we present a brief overview on different autoencoder models that are mainly in use today and discuss their rationale, relations and application areas.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science,Biotechnology

Reference65 articles.

1. Ashby WR (1961) An introduction to cybernetics. Chapman & Hall Ltd, New York

2. Baldi P (2012) Autoencoders, unsupervised learning, and deep architectures. In: Proceedings of ICML workshop on unsupervised and transfer learning. JMLR Workshop and Conference Proceedings, pp 37–49

3. Baldi P, Hornik K (1989) Neural networks and principal component analysis: Learning from examples without local minima. Neural Netw 2(1):53–58

4. Baldi PF, Hornik K (1995) Learning in linear neural networks: a survey. IEEE Trans Neural Netw 6(4):837–858

5. Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layer-wise training of deep networks. In: Advances in neural information processing systems, pp 153–160

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3