Abstract
AbstractSkilled interception behavior often relies on accurate predictions of external objects because of a large delay in our sensorimotor systems. To deal with the sensorimotor delay, the brain predicts future states of the target based on the current state available, but it is still debated whether internal representations acquired from prior experience are used as well. Here we estimated the predictive manner by analyzing the response behavior of a pursuer to a sudden directional change of the evasive target, providing strong evidence that prediction of target motion by the pursuer was incompatible with a linear extrapolation based solely on the current state of the target. Moreover, using neural network models, we validated that nonlinear extrapolation as estimated was computationally feasible and useful even against unknown opponents. These results support the use of internal representations in predicting target motion, suggesting the usefulness and versatility of predicting external object motion through internal representations.
Funder
Japan Society for the Promotion of Science
Accelerated Innovation Research Initiative Turning Top Science and Ideas into High-Impact Values
japan society for the promotion of science
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science,Biotechnology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献