Empirical modeling and prediction of neuronal dynamics

Author:

Fisco-Compte PauORCID,Aquilué-Llorens DavidORCID,Roqueiro NestorORCID,Fossas EnricORCID,Guillamon AntoniORCID

Abstract

AbstractMathematical modeling of neuronal dynamics has experienced a fast growth in the last decades thanks to the biophysical formalism introduced by Hodgkin and Huxley in the 1950s. Other types of models (for instance, integrate and fire models), although less realistic, have also contributed to understand neuronal dynamics. However, there is still a vast volume of data that have not been associated with a mathematical model, mainly because data are acquired more rapidly than they can be analyzed or because it is difficult to analyze (for instance, if the number of ionic channels involved is huge). Therefore, developing new methodologies to obtain mathematical or computational models associated with data (even without previous knowledge of the source) can be helpful to make future predictions. Here, we explore the capability of a wavelet neural network to identify neuronal (single-cell) dynamics. We present an optimized computational scheme that trains the ANN with biologically plausible input currents. We obtain successful identification for data generated from four different neuron models when using all variables as inputs of the network. We also show that the empiric model obtained is able to generalize and predict the neuronal dynamics generated by variable input currents different from those used to train the artificial network. In the more realistic situation of using only the voltage and the injected current as input data to train the network, we lose predictive ability but, for low-dimensional models, the results are still satisfactory. We understand our contribution as a first step toward obtaining empiric models from experimental voltage traces.

Funder

Universitat Politècnica de Catalunya

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3