Synthesis, Ligating Properties, Thermal Behavior, Computational and Biological Studies of Some Azo-transition Metal Complexes

Author:

Masoud Mamdouh S.,Hemdan Sokaina S.,Elsamra Rehab M. I.ORCID

Abstract

AbstractSynthesis of new Fe(III), Co(II), Ni(II), and Cu(II) complexes of two azo ligands; 1-(phenyldiazenyl) naphthalene-2-ol (sudan orange R, HL1), and sodium 2-hydroxy-5-[(E)-(4-nitrophenyl) diazenyl]benzoate (alizarin yellow GG, HL2) have been reported. Stoichiometries of 1:2 and 1:3 (M:L) of the synthesized complexes were approved by total-reflection X-ray fluorescence technique (TXRF) and by elemental analyses. The geometry of complexes (octahedral and square planar) was typified by various spectroscopic, thermal, and magnetic techniques. The ESR spectroscopy showed that Cu(II) complexes are of different isotropic and rhombic symmetries with the existence of Cu–Cu ions interaction. TGA, DTA, and DSC analyses supported the multi-stage thermal decomposition mechanisms, where the thermal breakdown is ended by the formation of metal oxide in most cases. Moreover, chemical reactivity modeling using the density functional theory (DFT) method with the B3LYP/6–31 basis set, showed that metal complexes are more biologically active than their precursor ligands. The calculated lipophilicity character for metal complexes is in the range of 33.8–37.5 eV. Docking results revealed high scoring energy for [Fe(HL2)3].H2O complex and moderate inhibition strength of [Cu(L1)2].H2O complex versus 1bqb, 3t88, and 4esw proteins. Ultimately, the extent of biological effectiveness was endorsed experimentally against four microbial strains. The results are guidelines for toxicological investigations. Graphical Abstract

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3