Structural, Optical and Antibacterial Activity Studies on CMC/PVA Blend Filled with Three Different Types of Green Synthesized ZnO Nanoparticles

Author:

Yassin A. Y.,Abdelghany A. M.,Salama Reda S.,Tarabiah A. E.

Abstract

AbstractIn this work, zinc oxide (ZnO) was produced using extracts of Thymus (Z), Hibiscus rosa-sinensis (K), and Daucus carota (G). Furthermore, sodium carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA) were combined with ZnO to form three novel nanocomposites. X-ray diffraction (XRD) was used for the structural analysis, where the semicrystalline nature of the (CMC/PVA)/ZnO nanocomposites was confirmed. The characteristics functional groups that arose inside the prepared samples were identified by Fourier transform infrared spectroscopy (FTIR). Evidence for the successful preparation of the pure ZnO particles and their nanocomposites was carried out using a transmission electron microscope (TEM). The ZnO nanoparticles are mostly spherical, irregularly distributed, and have radii ranging from 10 to 40 nm. Their anti-bacterial activity was studied against B. subtilis, E. coli, and Candida albicans. The inhibition zones of all the prepared samples against E. coli were 0, 19, 31, and 23 mm for PVA/CMC blend, PVA/CMC/ZnO (Z) (PCZ-Z), PVA/CMC/ZnO (K) (PCZ-K), and PVA/CMC/ZnO (G) (PCZ-G), respectively, compared to the streptomycin control Gram-positive standard with inhibition zone (34 mm). On the other hand, the inhibition zones of the prepared samples against B. subtilis were equal to 0, 26, 33, and 28 mm for CMC/PVA, PCZ-Z, PCZ-K, and PCZ-G, respectively. Based on these results, the PCZ-K sample is the most effective at resisting E. coli (91.17%) and B. subtilis (94.28%). These nanocomposites do not have harmful chemicals, making them strong candidates for use in biological applications.

Funder

Delta University for Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3