Nickel and sulfur codoped TiO2 nanoparticles for efficient visible light photocatalytic activity

Author:

Kunnamareddy Mehala,Rajendran Ranjith,Sivagnanam Megala,Rajendran Ramesh,Diravidamani Barathi

Abstract

AbstractIn this work, Nickel (Ni) and sulfur (S) codoped TiO2 nanoparticles were prepared by a sol-gel technique. The as-prepared catalyst was characterized using X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), FT-Raman spectroscopy, scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectra (DRS) for investigating crystal structure, crystal phase, particle size and bandgap energy of these samples. The photocatalytic performances of all the prepared catalysts have been investigated for the degradation of methylene blue (MB) under visible light irradiation. It was noticed that Ni-S codoped TiO2(Ni-S/TiO2) nanoparticles exhibited much higher photocatalytic activity compared with pure, Ni and S doped TiO2 due to higher visible light absorption and probable decrease in the recombination of photo-generated charges. It was decided that the great visible light absorption was created for codoped TiO2 by the formation of impurity energy states near both the edges of the collection, which works as trapping sites for both the photogenerated charges to decrease the recombination process.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3