Antimicrobial, and Antibiofilm Activities of Silver Doped Hydroxyapatite: A Novel Bioceramic Material for Dental Filling

Author:

Elbasuney Sherif,El-Sayyad Gharieb S.ORCID,Radwan Sara M.,Correa-Duarte Miguel A.

Abstract

AbstractEven though hydroxyapatite (HA) is the most common biocompatible material; it has limited antibacterial resistance. HA experiences a tailor-made structure depending on the desired applications. In this regard, silver (Ag) is of particular interest to inhibit wide spectrum of pathogenic bacteria and other microorganisms. Silver doped hydroxyapatite (Ag-HA) was developed via wet co-precipitation with subsequent hydrothermal processing to hinder the growth and multiplication of pathogenic microbes. Ag-HA demonstrated mono-dispersed nano-rods of 70 nm length and 7 nm diameters. Even though silver dopant induced stresses within the crystal lattice; Ag-HA maintained the crystallographic structure of HA with no change. Ag-HA nanocomposite demonstrated Ca/P value of 1.238 compared with 1.402 for virgin HA via XPS spectroscopy. The reduction of Ca/P value was correlated to the partial replacement of Ca+2 with Ag+1; Silver content was reported to be of 1 atomic %. Elemental mapping using EDAX confirmed uniform dispersion of silver ion within HA lattice. Antimicrobial results indicated that, Ag-HA nanocomposite demonstrated the most potent zone of inhibition (ZOI) against Staphylococcus aureus, and Candida albicans. Antibiofilm results indicated that Ag-HA nanocomposite at 10.0 µg/mL, experienced the highest percentage for S. aureus and C. albicans of 96.09%, and 77.77%, respectively. Ag-HA nanocomposite demonstrated an excellent disinfectant agent once it had excited by UV light. In growth curve assay, the OD600 value of Ag- HA were lower, showing the repression impact on the growth of S. aureus. It was observed that the quantity of cellular protein discharged from S. aureus is directly proportional to the concentration of Ag-HA, which proves the antibacterial characteristics of the Ag-HA nanocomposite, and explains the creation of holes in the bacterial membrane producing the oozing out of the proteins from the S. aureus cytoplasm. Ag-HA nanocomposite achieved the complete lysis of the bacterial cell and cell malformation, decreasing the total viable number, so the outstanding antimicrobial results encouraged the tooth filling biomedical applications. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3