Abstract
AbstractEven though hydroxyapatite (HA) is the most common biocompatible material; it has limited antibacterial resistance. HA experiences a tailor-made structure depending on the desired applications. In this regard, silver (Ag) is of particular interest to inhibit wide spectrum of pathogenic bacteria and other microorganisms. Silver doped hydroxyapatite (Ag-HA) was developed via wet co-precipitation with subsequent hydrothermal processing to hinder the growth and multiplication of pathogenic microbes. Ag-HA demonstrated mono-dispersed nano-rods of 70 nm length and 7 nm diameters. Even though silver dopant induced stresses within the crystal lattice; Ag-HA maintained the crystallographic structure of HA with no change. Ag-HA nanocomposite demonstrated Ca/P value of 1.238 compared with 1.402 for virgin HA via XPS spectroscopy. The reduction of Ca/P value was correlated to the partial replacement of Ca+2 with Ag+1; Silver content was reported to be of 1 atomic %. Elemental mapping using EDAX confirmed uniform dispersion of silver ion within HA lattice. Antimicrobial results indicated that, Ag-HA nanocomposite demonstrated the most potent zone of inhibition (ZOI) against Staphylococcus aureus, and Candida albicans. Antibiofilm results indicated that Ag-HA nanocomposite at 10.0 µg/mL, experienced the highest percentage for S. aureus and C. albicans of 96.09%, and 77.77%, respectively. Ag-HA nanocomposite demonstrated an excellent disinfectant agent once it had excited by UV light. In growth curve assay, the OD600 value of Ag- HA were lower, showing the repression impact on the growth of S. aureus. It was observed that the quantity of cellular protein discharged from S. aureus is directly proportional to the concentration of Ag-HA, which proves the antibacterial characteristics of the Ag-HA nanocomposite, and explains the creation of holes in the bacterial membrane producing the oozing out of the proteins from the S. aureus cytoplasm. Ag-HA nanocomposite achieved the complete lysis of the bacterial cell and cell malformation, decreasing the total viable number, so the outstanding antimicrobial results encouraged the tooth filling biomedical applications.
Graphical Abstract
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Polymers and Plastics
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献