The Influence of NiO Nanoparticles on Structural, Optical and Dielectric Properties of CMC/PVA/PEDOT:PSS Nanocomposites

Author:

Salim E.,Tarabiah A. E.

Abstract

AbstractThe solution casting process was used to fabricate nanocomposite samples composed of carboxymethylcellulose (CMC), polyvinyl alcohol (PVA), poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and filled with varied concentrations of nickel oxide nanoparticles (NiO NPs). The effect of NiO nanoparticles on the structural, optical, and electrical properties of the pure CMC/PVA/PEDOT:PSS mixture was studied and discussed. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis revealed that the NiO NPs are cubic in phase and range in size from 10 to 55 nm. The XRD analysis of the incorporated films indicated that the NiO NPs crystallinity increased at expense of the CMC/PVA/PEDOT:PSS composites. Fourier Transform Infrared (FTIR) examination revealed the main absorption vibrational peaks of CMC, PVA, PEDOT:PSS, and Ni-O, whose intensities changed randomly after filling, revealing the intermolecular interaction between the nanocomposite components. The UV and visible range absorption spectra showed a sharp peak around 228 for the pure blend, which can be assigned to the π→π* transition. After being filled with NiO NPs, the nanocomposites produced displayed new peaks at 292 and 422 nm that steadily increased with increasing NiO NPs concentration. The optical energy gap (Eg) was computed, and it was discovered that when the NiO NPs content increased, the Eg decreased (from 4.88 to 4.06 eV). At room temperature and over a wide frequency range, between 10− 1 and 107 Hz, the samples’ impedance, AC conductivity, and dielectric qualities were examined. Increased NiO NPs content was seen to gradually enhance dielectric loss (up to 2255), and dielectric constant (up to 311). The AC conductivity of the filled samples is also enhanced and corresponds to Jonscher power law. By analysing impedance components of the Z*, the equivalent electrical circuit for each sample was determined. Because of the considerable improvement in optical and electrical properties, these composite films could compete for usage in optoelectronic applications.

Funder

Mansoura University

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3