Graph matching beyond perfectly-overlapping Erdős–Rényi random graphs

Author:

Hu Yaofang,Wang Wanjie,Yu Yi

Abstract

AbstractGraph matching is a fruitful area in terms of both algorithms and theories. Given two graphs $$G_1 = (V_1, E_1)$$ G 1 = ( V 1 , E 1 ) and $$G_2 = (V_2, E_2)$$ G 2 = ( V 2 , E 2 ) , where $$V_1$$ V 1 and $$V_2$$ V 2 are the same or largely overlapped upon an unknown permutation $$\pi ^*$$ π , graph matching is to seek the correct mapping $$\pi ^*$$ π . In this paper, we exploit the degree information, which was previously used only in noiseless graphs and perfectly-overlapping Erdős–Rényi random graphs matching. We are concerned with graph matching of partially-overlapping graphs and stochastic block models, which are more useful in tackling real-life problems. We propose the edge exploited degree profile graph matching method and two refined variations. We conduct a thorough analysis of our proposed methods’ performances in a range of challenging scenarios, including coauthorship data set and a zebrafish neuron activity data set. Our methods are proved to be numerically superior than the state-of-the-art methods. The algorithms are implemented in the R (A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, 2020) package GMPro (GMPro: graph matching with degree profiles, 2020).

Funder

Singapore Ministry of Education Academic Research

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science

Reference36 articles.

1. Cherkassky, B.V., Goldberg, A.V., Martin, P., Setubal, J.C., Stolfi, J.: Augment or push: a computational study of bipartite matching and unit-capacity flow algorithms. J. Exp. Algo. (JEA) 3, 8–es (1998)

2. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int. J. Pattern Recogn. Artif. Intell. 18(03), 265–298 (2004)

3. Csardi, G., Nepusz, T.: The igraph software package for complex network research. Int. J. Compl. Syst. 1695 (2006). http://igraph.org

4. Czajka, T., Pandurangan, G.: Improved random graph isomorphism. J. Disc. Algo. 6(1), 85–92 (2008)

5. Ding, J., Ma, Z., Wu, Y., Xu, J.: Efficient random graph matching via degree profiles. arXiv preprint arXiv:1811.07821 (2018)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3