Variable selection using conditional AIC for linear mixed models with data-driven transformations

Author:

Lee Yeonjoo,Rojas-Perilla Natalia,Runge MarinaORCID,Schmid TimoORCID

Abstract

AbstractWhen data analysts use linear mixed models, they usually encounter two practical problems: (a) the true model is unknown and (b) the Gaussian assumptions of the errors do not hold. While these problems commonly appear together, researchers tend to treat them individually by (a) finding an optimal model based on the conditional Akaike information criterion (cAIC) and (b) applying transformations on the dependent variable. However, the optimal model depends on the transformation and vice versa. In this paper, we aim to solve both problems simultaneously. In particular, we propose an adjusted cAIC by using the Jacobian of the particular transformation such that various model candidates with differently transformed data can be compared. From a computational perspective, we propose a step-wise selection approach based on the introduced adjusted cAIC. Model-based simulations are used to compare the proposed selection approach to alternative approaches. Finally, the introduced approach is applied to Mexican data to estimate poverty and inequality indicators for 81 municipalities.

Funder

Otto-Friedrich-Universität Bamberg

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3