Author:
Marques Isa,Kneib Thomas,Klein Nadja
Abstract
AbstractCircular data can be found across many areas of science, for instance meteorology (e.g., wind directions), ecology (e.g., animal movement directions), or medicine (e.g., seasonality in disease onset). The special nature of these data means that conventional methods for non-periodic data are no longer valid. In this paper, we consider wrapped Gaussian processes and introduce a spatial model for circular data that allow for non-stationarity in the mean and the covariance structure of Gaussian random fields. We use the empirical equivalence between Gaussian random fields and Gaussian Markov random fields which allows us to considerably reduce computational complexity by exploiting the sparseness of the precision matrix of the associated Gaussian Markov random field. Furthermore, we develop tunable priors, inspired by the penalized complexity prior framework, that shrink the model toward a less flexible base model with stationary mean and covariance function. Posterior estimation is done via Markov chain Monte Carlo simulation. The performance of the model is evaluated in a simulation study. Finally, the model is applied to analyzing wind directions in Germany.
Funder
deutsche forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献