Author:
Bornn Luke,Pillai Natesh S.,Smith Aaron,Woodard Dawn
Funder
Defense Advanced Research Projects Agency
Directorate for Mathematical and Physical Sciences
National Science Foundation
Army Research Office
Natural Sciences and Engineering Research Council of Canada
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science
Reference19 articles.
1. Andrieu, C., Roberts, G.O.: The pseudo-marginal approach for efficient Monte Carlo computations. Ann. Stat. 37, 697–725 (2009)
2. Andrieu, C., Vihola, M.: Establishing some order amongst exact approximations of MCMCs. arXiv preprint,
arXiv:1404.6909v1
(2014)
3. Andrieu, C., Doucet, A., Holenstein, R.: Particle Markov chain Monte Carlo methods. J. R. Stat. Soc. 72, 269–342 (2010)
4. Doucet, A., Pitt, M., Deligiannidis, G., Kohn, R.: Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator. arXiv preprint,
arXiv:1210.1871v3
(2014)
5. Flury, T., Shephard, N.: Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models. Econom. Theory 27(5), 933–956 (2011)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献