1. Ahn, S., Balan, A.K., Welling, M.: Bayesian posterior sampling via stochastic gradient fisher scoring. In: International Conference on Machine Learning (ICML) (2012a)
2. Ahn, S., Korattikara, A., Welling, M.: Bayesian posterior sampling via stochastic gradient fisher scoring. In: International Conference on Machine Learning (ICML) (2012b)
3. Aitchison, L.: A statistical theory of cold posteriors in deep neural networks. In: International Conference on Learning Representation (ICLR) (2021)
4. Andrieu, C., Moulines, E., Priouret, P.: Stability of stochastic approximation under verifiable conditions. SIAM J. Control Optim. 44, 283–312 (2005)
5. Belkin, M.: Fit without fear: remarkable mathematical phenomena of deep learning through the prism of interpolation. Acta Numer. 30, 203–248 (2021)