euMMD: efficiently computing the MMD two-sample test statistic for univariate data

Author:

Bodenham Dean A.,Kawahara Yoshinobu

Abstract

AbstractThe maximum mean discrepancy (MMD) test is a nonparametric kernelised two-sample test that, when using a characteristic kernel, can detect any distributional change between two samples. However, when the total number of $$d$$ d -dimensional observations is $$n$$ n , direct computation of the test statistic is $$\mathcal {O}(dn^2 )$$ O ( d n 2 ) . While approximations with lower computational complexity are known, more efficient methods for computing the exact test statistic are unknown. This paper provides an exact method for computing the MMD test statistic for the univariate case in $$\mathcal {O}(n\log n)$$ O ( n log n ) using the Laplacian kernel. Furthermore, this exact method is extended to an approximate method for $$d$$ d -dimensional real-valued data also with complexity log-linear in the number of observations. Experiments show that this approximate method can have good statistical performance when compared to the exact test, particularly in cases where $$d> n$$ d > n .

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. eummd: Efficient Univariate Maximum Mean Discrepancy;CRAN: Contributed Packages;2023-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3