Latent structure blockmodels for Bayesian spectral graph clustering

Author:

Sanna Passino FrancescoORCID,Heard Nicholas A.

Abstract

AbstractSpectral embedding of network adjacency matrices often produces node representations living approximately around low-dimensional submanifold structures. In particular, hidden substructure is expected to arise when the graph is generated from a latent position model. Furthermore, the presence of communities within the network might generate community-specific submanifold structures in the embedding, but this is not explicitly accounted for in most statistical models for networks. In this article, a class of models called latent structure block models (LSBM) is proposed to address such scenarios, allowing for graph clustering when community-specific one-dimensional manifold structure is present. LSBMs focus on a specific class of latent space model, the random dot product graph (RDPG), and assign a latent submanifold to the latent positions of each community. A Bayesian model for the embeddings arising from LSBMs is discussed, and shown to have a good performance on simulated and real-world network data. The model is able to correctly recover the underlying communities living in a one-dimensional manifold, even when the parametric form of the underlying curves is unknown, achieving remarkable results on a variety of real data.

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science

Reference62 articles.

1. Amini, A.A., Razaee, Z.S.: Concentration of kernel matrices with application to kernel spectral clustering. Ann. Stat. 49(1), 531–556 (2021)

2. Asta, D.M., Shalizi, C.R.: Geometric network comparisons. In: Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence. pp. 102–110. UAI’15, AUAI Press (2015)

3. Athreya, A., Priebe, C.E., Tang, M., Lyzinski, V., Marchette, D.J., Sussman, D.L.: A limit theorem for scaled eigenvectors of random dot product graphs. Sankhya A 78(1), 1–18 (2016)

4. Athreya, A., Fishkind, D.E., Tang, M., Priebe, C.E., Park, Y., Vogelstein, J.T., Levin, K., Lyzinski, V., Qin, Y., Sussman, D.L.: Statistical inference on random dot product graphs: a survey. J. Mach. Learn. Res. 18(226), 1–92 (2018)

5. Athreya, A., Tang, M., Park, Y., Priebe, C.E.: On estimation and inference in latent structure random graphs. Stat. Sci. 36(1), 68–88 (2021)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3