Funder
Ministry of Science and ICT, South Korea
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Reference39 articles.
1. Asuncion, A., Newman, D.J.: UCI machine learning repository, University of California, Irvine, School of Information and Computer Science, Irvine, CA, 2007 (2018). http://www.ics.uci.edu/~mlearn/MLRepository.html. Accessed 02 Oct 2018
2. Batista, G.E., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl. 6(1), 20–29 (2004). https://doi.org/10.1145/1007730.1007735
3. Bellinger, C., Drummond, C., Japkowicz, N.: Beyond the boundaries of SMOTE: a framework for manifold-based synthetically oversampling. In: Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19–23, 2016, Proceedings, Part I 16, pp. 248–263 (2016). Springer https://doi.org/10.1007/978-3-319-46128-1_16
4. Bunkhumpornpat, C., Sinapiromsaran, K., Lursinsap, C.: Safe-level-smote: safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem. In: Advances in Knowledge Discovery and Data Mining: 13th Pacific-Asia Conference, PAKDD 2009 Bangkok, Thailand, April 27–30, 2009 Proceedings 13, pp. 475–482. Springer (2009). https://doi.org/10.1007/978-3-642-01307-2_43
5. Chawla, N.V.: Data Mining for Imbalanced Datasets: An Overview, pp. 875–886. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-09823-4_45