A Riemannian Newton trust-region method for fitting Gaussian mixture models

Author:

Sembach LenaORCID,Burgard Jan PabloORCID,Schulz VolkerORCID

Abstract

AbstractGaussian Mixture Models are a powerful tool in Data Science and Statistics that are mainly used for clustering and density approximation. The task of estimating the model parameters is in practice often solved by the expectation maximization (EM) algorithm which has its benefits in its simplicity and low per-iteration costs. However, the EM converges slowly if there is a large share of hidden information or overlapping clusters. Recent advances in Manifold Optimization for Gaussian Mixture Models have gained increasing interest. We introduce an explicit formula for the Riemannian Hessian for Gaussian Mixture Models. On top, we propose a new Riemannian Newton Trust-Region method which outperforms current approaches both in terms of runtime and number of iterations. We apply our method on clustering problems and density approximation tasks. Our method is very powerful for data with a large share of hidden information compared to existing methods.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science

Reference47 articles.

1. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008) ISBN 978-0-691-13298-3

2. Alfò, M., Nieddu, L., Vicari, D.: A finite mixture model for image segmentation. Stat Comput, 18(2):137–150. https://doi.org/10.1007/s11222-007-9044-9

3. Andrews, J.L.: Addressing overfitting and underfitting in Gaussian model-based clustering. Comput Stat Data Anal 127, 160–171 (2018)

4. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: SODA ’07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035, Philadelphia (2007). Society for Industrial and Applied Mathematics. ISBN 978-0-898716-24-5

5. Articus, C., Burgard, J.P.: A finite mixture fay herriot-type model for estimating regional rental prices in Germany. Research Papers in Economics 2014-14, University of Trier, Department of Economics, 2014. https://ideas.repec.org/p/trr/wpaper/201414.html

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3