Classification of periodic arrivals in event time data for filtering computer network traffic

Author:

Sanna Passino FrancescoORCID,Heard Nicholas A.ORCID

Abstract

AbstractPeriodic patterns can often be observed in real-world event time data, possibly mixed with non-periodic arrival times. For modelling purposes, it is necessary to correctly distinguish the two types of events. This task has particularly important implications in computer network security; there, separating automated polling traffic and human-generated activity in a computer network is important for building realistic statistical models for normal activity, which in turn can be used for anomaly detection. Since automated events commonly occur at a fixed periodicity, statistical tests using Fourier analysis can efficiently detect whether the arrival times present an automated component. In this article, sequences of arrival times which contain automated events are further examined, to separate polling and non-periodic activity. This is first achieved using a simple mixture model on the unit circle based on the angular positions of each event time on the p-clock, where p represents the main periodicity associated with the automated activity; this model is then extended by combining a second source of information, the time of day of each event. Efficient implementations exploiting conjugate Bayesian models are discussed, and performance is assessed on real network flow data collected at Imperial College London.

Funder

Imperial College London

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gaussian process-based quasi-coherent noise suppression in magnetic confinement devices with superconductors;Nuclear Fusion;2023-09-07

2. Network traffic classification based on periodic behavior detection;2022 18th International Conference on Network and Service Management (CNSM);2022-10-31

3. Seasonal Adjustment for traffic modeling and analysis in IEEE 802.15.4 networks;2022 7th International Conference on Image and Signal Processing and their Applications (ISPA);2022-05-08

4. Classification of Mechanical Fault-Excited Events Based on Frequency;Communications in Computer and Information Science;2022

5. SK-Tree: a systematic malware detection algorithm on streaming trees via the signature kernel;2021 IEEE International Conference on Cyber Security and Resilience (CSR);2021-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3