Author:
Bucci Andrea,Ippoliti Luigi,Valentini Pasquale
Abstract
AbstractForecasting covariance matrices is a difficult task in many research fields since the predicted matrices should be at least positive semidefinite. This problem can be overcome by including constraints in the predictive model or through a parametrization of the matrices to be predicted. In this paper, we focus on the latter approach in a financial application and analyse four parametrizations of the covariance matrices of asset returns. The aim of the manuscript is to understand if the parametrizations of the covariance matrices exhibit differences in terms of predictive accuracy. To this end, we critically analyse their predictive performance through both a Monte Carlo simulation and an empirical application with daily and weekly realized covariance matrices of stock assets. Our findings highlight that the Cholesky decomposition and the parametrization recently introduced by Archakov and Hansen are the overall best-performing methods in terms of forecasting accuracy.
Funder
Università degli Studi G. D’Annunzio Chieti Pescara
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献