Moment-based density estimation of confidential micro-data: a computational statistics approach

Author:

Wakefield BradleyORCID,Lin Yan-Xia,Sarathy Rathin,Muralidhar Krishnamurty

Abstract

AbstractProviding access to synthetic micro-data in place of confidential data to protect the privacy of participants is common practice. For the synthetic data to be useful for analysis, it is necessary that the density function of the synthetic data closely approximate the confidential data. Hence, accurately estimating the density function based on sample micro-data is important. Existing kernel-based, copula-based, and machine learning methods of joint density estimation may not be viable. Applying the multivariate moments’ problem to sample-based density estimation has long been considered impractical due to the computational complexity and intractability of optimal parameter selection of the density estimate when the true joint density function is unknown. This paper introduces a generalised form of the sample moment-based density estimate, which can be used to estimate joint density functions when only the information of empirical moments is available. We demonstrate optimal parametrisation of the moment-based density estimate based solely on sample data by employing a computational strategy for parameter selection. We compare the performance of the moment-based estimate to that of existing non-parametric and parametric density estimation methods. The results show that using empirical moments can provide a reasonable, robust non-parametric approximation of a joint density function that is comparable to existing non-parametric methods. We provide an example of synthetic data generation from the moment-based density estimate and show that the resulting synthetic data provides a reasonable disclosure-protected alternative for public release.

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science

Reference42 articles.

1. Akhiezer, N.I., Kemmer, N.: The Classical Moment Problem: And Some Related Questions in Analysis, vol. 5. Oliver & Boyd, Edinburgh (1965)

2. Alexits, G.: Convergence Problems of Orthogonal Series. International Series of Monographs in Pure and Applied Mathematics, vol. 20, pp. 63–170. Pergamon Press, Oxford (1961). https://books.google.com.au/books?id=VAJRAAAAMAAJ

3. Charlier, C.V.L.: Frequency curves of type a in heterograde statistics. Ark. Mat. Ast. Fysik 9, 1–17 (1914)

4. Cramer, H.: Mathematical Methods of Statistics, vol. 9, pp. 85–89. Princeton University Press, Princeton (1946)

5. Duong, T.: ks: Kernel density estimation and kernel discriminant analysis for multivariate data in R. J. Stat. Softw. 21(7), 1–16 (2007). https://doi.org/10.18637/jss.v021.i07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3