Robust multipe imputation with GAM

Author:

Templ Matthias

Abstract

AbstractMultiple imputation of missing values is a key step in data analytics and a standard process in data science. Nonlinear imputation methods come into play whenever the linear relationship between a response and predictors cannot be linearized by transformations of variables, adding interactions, or using, e.g., quadratic terms. Generalized additive models (GAM) and its extension, GAMLSS—where each parameter of the distribution, such as mean, variance, skewness, and kurtosis, can be represented as a function of predictors, are widely used nonlinear methods. However, non-robust methods such as standard GAM’s and GAMLSS’s can be swayed by outliers, leading to outlier-driven imputations. This can apply concerning both representative outliers—those true yet unusual values of your population—and non-representative outliers, which are mere measurement errors. Robust (imputation) methods effectively manage outliers and exhibit resistance to their influence, providing a more reliable approach to dealing with missing data. The innovative solution of the proposed new imputation algorithm tackles three major challenges related to robustness. (1) A robust bootstrap method is employed to handle model uncertainty during the imputation of a random sample. (2) The approach incorporates robust fitting techniques to enhance accuracy. (3) It effectively considers imputation uncertainty in a resilient manner. Furthermore, any complex model for any variable with missingness can be considered and run through the algorithm. For the real-world data sets used and the simulation study conducted, the novel algorithm imputeRobust which includes robust methods for imputation with GAM’s demonstrates superior performance compared to existing imputation methods using GAMLSS. Limitations pertain to the imputation of categorical variables using robust techniques.

Funder

FHNW University of Applied Sciences and Arts Northwestern Switzerland

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3