A multivariate heavy-tailed integer-valued GARCH process with EM algorithm-based inference

Author:

Jang Yuhyeong,Sundararajan Raanju R.,Barreto-Souza Wagner

Abstract

AbstractA new multivariate integer-valued Generalized AutoRegressive Conditional Heteroscedastic (GARCH) process based on a multivariate Poisson generalized inverse Gaussian distribution is proposed. The estimation of parameters of the proposed multivariate heavy-tailed count time series model via maximum likelihood method is challenging since the likelihood function involves a Bessel function that depends on the multivariate counts and its dimension. As a consequence, numerical instability is often experienced in optimization procedures. To overcome this computational problem, two feasible variants of the expectation-maximization (EM) algorithm are proposed for estimating the parameters of our model under low and high-dimensional settings. These EM algorithm variants provide computational benefits and help avoid the difficult direct optimization of the likelihood function from the proposed process. Our model and proposed estimation procedures can handle multiple features such as modeling of multivariate counts, heavy-tailedness, overdispersion, accommodation of outliers, allowances for both positive and negative autocorrelations, estimation of cross/contemporaneous-correlation, and the efficient estimation of parameters from both statistical and computational points of view. Extensive Monte Carlo simulation studies are presented to assess the performance of the proposed EM algorithms. Two empirical applications of our approach are provided. The first application concerns modeling bivariate count time series data on cannabis possession-related offenses in Australia, while the second one involves modeling intraday high-frequency financial transactions data from multiple holdings in the U.S. financial market.

Funder

National Institute of Justice

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3