Abstract
AbstractNonparametric mixture models based on the Pitman–Yor process represent a flexible tool for density estimation and clustering. Natural generalization of the popular class of Dirichlet process mixture models, they allow for more robust inference on the number of components characterizing the distribution of the data. We propose a new sampling strategy for such models, named importance conditional sampling (ICS), which combines appealing properties of existing methods, including easy interpretability and a within-iteration parallelizable structure. An extensive simulation study highlights the efficiency of the proposed method which, unlike other conditional samplers, shows stable performances for different specifications of the parameters characterizing the Pitman–Yor process. We further show that the ICS approach can be naturally extended to other classes of computationally demanding models, such as nonparametric mixture models for partially exchangeable data.
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献